Perbandingan Peramalan Kasus Katarak Menggunakan Metode ARIMA dan Fuzzy Time Series di Rumah Sakit
DOI: 10.29241/jmk.v11i1.2084Author
Zainal ARIFIN Arifin(1*)(1) Universitas Strada Indonesia
(1*) Corresponding Author
Full Text
Full Text: View / Download PDFArticle Metrics
Abstract View

Abstract
ABSTRAK
Metode ARIMA (Autoregressive Integrated Moving Average) dan metode Fuzzy Time Series merupakan metode peramalan yang dapat diterapkan untuk meramalkan jangka pendek, menengah, dan panjang serta memiliki tingkat akurasi yang baik. Kedua metode ini akan digunakan untuk meramalkan kasus katarak di RS. Mata Undaan. Tujuan dari penelitian ini adalah untuk mengetahui hasil peramalan jumlah kasus katarak di RS. Mata Undaan pada tahun 2024 berdasarkan data kasus katarak sejak Januari 2012 sampai Desember 2023. Penelitian ini bersifat kuantitatif deskriptif dengan menggunakan software Minitab 19 untuk mengimplementasikan metode ARIMA dan PHP Source Code untuk Fuzzy Time Series model Chen. Hasil penelitian menunjukkan, bahwa pada penghitungan MAD, nilai ARIMA (1,1,1) sebesar 44,57, ARIMA (2,1,2) sebesar 45,54 dan Fuzzy Time Series model Chen sebesar 96,66. Hasil penghitungan MSE, nilai ARIMA (1,1,1) sebesar 3.098,11, ARIMA (2,1,2) sebesar 4.404,96 dan Fuzzy Time Series model Chen sebesar 9.406,75. Hasil penghitungan MAPE, nilai ARIMA (1,1,1) sebesar 7,68%, ARIMA (2,1,2) sebesar 8,02% dan Fuzzy Time Series model Chen sebesar 16,16%. Kesimpulan yang dapat diambil adalah metode ARIMA memiliki tingkat akurasi yang lebih baik jika dibandingkan dengan metode Fuzzy Time Series model Chen dalam meramalkan kasus katarak.
ABSTRACT
The ARIMA (Autoregressive Integrated Moving Average) method and the Fuzzy Time Series method are forecasting methods that can be applied to short, medium, and long-term predictions and have a good level of accuracy. These two methods will be used to predict cataract cases in hospitals. Undaan's eyes. The purpose of this study is to find out the results of predicting or forecasting the number of cataract cases in hospitals. Undaan's eyes in 2024 based on data on cataract cases from January 2012 to December 2023. This research is quantitative descriptive by using Minitab 19 software to implement the ARIMA method and PHP Source Code for the Fuzzy Time Series Chen model. The results of the study show that in the MAD calculation, the value of ARIMA (1,1,1) is 44.57, ARIMA (2,1,2) is 45.54 and the Fuzzy Time Series model of Chen is 96.66. The results of the MSE calculation showed that the value of ARIMA (1,1,1) was 3,098.11, ARIMA (2,1,2) was 4,404.96 and the Fuzzy Time Series of the Chen model was 9,406.75. The results of the MAPE calculation showed that the value of ARIMA (1,1,1) was 7.68%, ARIMA (2,1,2) was 8.02% and the Fuzzy Time Series model of Chen was 16.16%. The conclusion that can be drawn is that the ARIMA method has a better level of accuracy when compared to the Fuzzy Time Series method of the Chen model in the implementation of cataract case prediction.
Key words : ARIMA, Fuzzy Time Series, Chen, MAD, MSE, MAPE
Keywords
References
Aprilia, R. (2020). Vol. 1, No. 6, Desember 2020. Jurnal Health Sains, 1(6), 407-413.
https://doi.org/10.46799/jhs.v1i6.61 Azman, M. M. (2019). Analisa perbandingan nilai akurasi moving average dan exponential smoothing untuk sistem peramalan pendapatan pada perusahaan XYZ. Jurnal Sistem Dan Informatika, 13(2), 36-45. Brilliant, M., Lestari, K., & Oktaria, H. (2022). Peramalan pola jumlah nasabah menggunakan metode arima ,holt-winters exponential smoothing, fuzzy time series (study kasus : pt.aia sunrise agency). Journal of Software Engineering And Technology (SEAT), 2(2), 8-17. Fauziah, N., Wahyuningsih, S., & Nasution, Y. N. (2016). Peramalan Mengunakan Fuzzy Time Series Chen (Studi Kasus : Curah Hujan Kota Samarinda). Mathematics and Application, 4(2), 52-61. Fildzah, N., Sidharta, B., Handaja, D., & Indradi, R. (2021). Analisis Hubungan Aktivitas Fisik Terhadap Kejadian Katarak. Oftalmologi: Jurnal Kesehatan Mata Indonesia, 3(3), 9-18.
https://doi.org/10.11594/ojkmi.v3i3.20 Hadi, Sutrisno. (2019). STATISTIK (- (ed.); Cetakan V). Pustaka Pelajar. Harijono, S. (2000). Peramalan Bisnis (- (ed.)). PT. Gramedia Pustaka Utama. - Jafridin, M. A., Fauzi, N. F., Alias, R., Ab Halim, H. Z., Ahmad Bakhtiar, N. S., Khairudin, N. I., & Shafii, N. H. (2021). Comparison of Fuzzy Time Series and ARIMA to Forecast Tourist Arrivals to Homestay in Pahang. Journal of Computing Research and Innovation, 6(4), 80-89. https://doi.org/10.24191/jcrinn.v6i4.235 Kasanah, L. N. (2017). Aplikasi Autoregressive Integrated Moving Average (ARIMA) untuk Meramalkan Jumlah Demam Berdarah Dengue (DBD) di Puskesmas Mulyorejo. Jurnal Biometrika Dan Kependudukan, 5(2), 177.
https://doi.org/10.20473/jbk.v5i2.2016.177-189 Khanifah, N., Fadhila, I., Aldino, R., & Conggono, P. J. (2022). Implementasi Fuzzy Time Series Chen untuk Prediksi Jumlah Mahasiswa Baru Universitas Tidar. PROtek : Jurnal Ilmiah Teknik Elektro, 9(1), 22. https://doi.org/10.33387/protk.v9i1.3751 Kushartanti, R., & Latifah, M. (2020). Autoregressive Integrated Moving Average (ARIMA) Sebagai Model Peramalan Kasus Demam Berdarah Dengue. Jurnal Kesehatan Lingkungan, 10(2), 76-80. https://doi.org/10.47718/jkl.v10i2.1165 Laskarjati, S. D., & Ahmad, I. S. (2023). Perbandingan Peramalan Harga Saham menggunakan Autoregressive Intergrated Moving Average (ARIMA) dan Fuzzy Time series Markov Chain (Studi Kasus: Saham PT Indofood CBP Sukses Makmur Tbk). Jurnal Sains Dan Seni ITS, 11(6). https://doi.org/10.12962/j23373520.v11i6.91417 Makridakis, S., & Hyndman, R. J. (2016). Manual of Forecasting: Methods and Applications. February. https://doi.org/10.13140/RG.2.1.2528.4880 Maulidya, G. A., Satyahadewi, N., Statistika, P. S., & Tanjungpura, U. (2024). Analisis Autoregressive Integrated Moving Average ( ARIMA ) dengan. 7(1), 60-72.
https://doi.org/10.13057/ijas.v7i1.85229 Montgomery, Douglas C. Jennings, Cheryl L. Kulahci, M. (2015). Introduction to Time Series Analysis and Forecasting ( et al Balding, David J. (ed.); 2nd ed.). John Wiley & Son, Inc. Permana, R. A., & Putri, W. D. R. (2015). Pengaruh Proporsi Jagung Dan Kacang Merah Serta Substitusi Bekatul Terhadap Karakteristik Fisik Kimia Flakes. Jurnal Pangan Dan Agroindustri, 3(2), 734-742. Qalbi, A., Nurfadilah, K., & Alwi, W. (2021). Comparison of Fuzzy Time Series Methods and Autoregressive Integrated Moving Average (ARIMA) for Inflation Data. Eigen Mathematics Journal, 4(2), 40-50. https://doi.org/10.29303/emj.v4i2.122 Rachim, F., Tarno, T., & Sugito, S. (2020). PERBANDINGAN FUZZY TIME SERIES DENGAN METODE CHEN DAN METODE S. R. SINGH (Studi Kasus : Nilai Impor di Jawa Tengah Periode Januari 2014 - Desember 2019). Jurnal Gaussian, 9(3), 306-315.
https://doi.org/10.14710/j.gauss.v9i3.28912 Rini, M. W., & Ananda, N. (2022). Perbandingan Metode Peramalan Menggunakan Model Time Series. Tekinfo: Jurnal Ilmiah Teknik Industri Dan Informasi, 10(2), 88-101.
https://doi.org/10.31001/tekinfo.v10i2.1419 S, D. (2024). Angka Katarak di Indonesia Tertinggi di Asia Tenggara. https://mediaindonesia.com/humaniora/677615/angka-katarak-di-indonesia-tertinggi-di-asia-tenggara#google_vignette Saidi;, R. A. L. O. A. (2023). Penerapan Metode Fuzzy Time Series Chen Dalam Meramalkan Nilai Tukar Rupiah Terhadap Dolar Amerika. 3, 372-379.
https://doi.org/10.33772/jmks.v3i2.51 Sigit, N., & Setiyoargo, A. (2020). Analisis Peramalan Jumlah Penderita Hipertensi pada Lansia di Kabupaten Malang Menggunakan Metode Arima Box-Jenkins. Jurnal Rekam Medis Dan Informasi Kesehatan, 3(1), 7-12. https://doi.org/10.31983/jrmik.v3i1.5578 Sulandari, W. S. Y. Y. (2020). APLIKASI FUZZY Pada Pemodelan Runtun Waktu (Nurhaida (ed.); Cetakan 1). Khazanah Intelektual. Susilowati, & Sulistijanti, W. (2018). Perbandingan Metode Fuzzy Time Series dengan Metode Box-Jenkins untuk Memprediksi Jumlah Kunjungan Pasien Rawat Inap (Studi Kasus: Puskemas Geyer Satu). The 7th University Research Colloqium, 61-72. Wardani, R. (2023). Statistika dan Analisis Data (Pertama, J). Penerbit Deepublish.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Zainal ARIFIN Arifin

This work is licensed under a Creative Commons Attribution 4.0 International License.