Analisis Time Series Untuk Meramalkan Jumlah Penderita Tuberkulosis Dengan Metode Single Expontial Smooting Di Kabupaten Pamekasan

DOI: 10.29241/jmk.v10i2.1917

Author

Difa Nur Sya'balinda(1*)

(1) Fakultas Kesehatan Masyarakat, Universitas Airlangga, Indonesia
(1*) Corresponding Author

Full Text

Full Text: View / Download PDF

Article Metrics

Abstract View : 109 times; PDF Download : 51 times

Abstract

Tuberkulosis merupakan penyakit menular yang masih menjadi masalah kesehatan di masyarakat. Peramalan penderita TBC sangat penting untuk membantu pemerintah mengendalikan penyakit tersebut, salah satunya dengan menggunakan metode time series dengan metode Single Exponential Smoothing. Penelitian ini bertujuan untuk menganalisis penerapan metode Single Exponential Smoothing untuk memprediksi jumlah penderita TBC di Kabupaten Pamekasan dengan menggunakan time series. Jenis penelitian non-reaktif menggunakan data sekunder. Terdapat tiga rentang waktu yang berbeda dalam penelitian ini yaitu periode 1 sampai 60, periode 1 sampai 65 dan periode 1 sampai 70. Analisis data menggunakan software Rstudio berbasis metode Single Exponential Smoothing. Akurasi peramalan menggunakan nilai MAPE (Mean Absolute Percentage Error). Hasil penelitian menunjukkan periode 1 sampai 70 merupakan model terbaik menggunakan metode Single Exponential Smoothing dengan nilai α=0,295. Hasil peramalan menunjukkan pada bulan November dan Desember 2023 jumlah penderita TBC di Kabupaten Pamekasan sebanyak 89,06/bulan. Kesimpulannya, peramalan jumlah penderita TBC di Kabupaten Pamekasan periode 1 sampai 70 merupakan model terbaik.

Keywords

Single Exponential Smoothing, Time series, Tuberculosis

References

Ahmad, F. (2020). Penentuan Metode Peramalan pada Produksi Part New Granada Bowl ST di PT.X. Jurnal Intgrasi Sistem Industri, 7(1), 31–39.

Cilloni, L., Fu, H., Vesga, J. F., Dowdy, D., Pretorius, & et al. (2017). The potential impact of the COVID-19 pandemic on the tuberculosis epidemic a modeling analysis. EClinical Medicine.

Dinkes Provinsi Jawa Timur. (2022). Profil Kesehatan Provinsi Jawa Timur. jDinas Kesehatan Provinsi Jawa Timur.

Halimah, N., & Suntin. (2020). Proyeksi dan Pemetaan Wilayah Sebaran Balita Stunting Di Kota Makassar Berbasis Sistem Informasi Geografi(SIG). Promotif: Jurnal Kesehatan Masyarakat, 10(02), 173–184.

Hussain, H., Mori, A. T., Khan, A. J., Creswell, J., Tylleskar, T., & Robberstad, B. (2019). The cost-effectiveness of incentive-based active case finding for tuberculosis (TB) control in the private sector Karachi, Pakistan. BMC Health Services Research, 19(690). https://doi.org/10.1186/s12913-019-4444-z

Kronthaler, F., & Zöllner, S. (2021). Data Analysis Basics with RStudio. Springer Spektrum Berlin. https://doi.org/10.1186/s12913-019-4444-z

Kumar, D. P., Singh, H., Verma, D. P., & Sinha, D. A. (2023). The COVID-19 impact on tuberculosis incidence notification in India-A comparative study (2017-2022). Preprint-Researchsquare. https://doi.org/10.21203.rs.3.rs-2560109.v2

Lubis, L. A. (2018). Trend Analisis dengan Metode Time Series untuk Meramalkan Penderita Tuberkulosis (TB) Tahun 2017-2021 berdasarkan Data Penderita TB Tahun 2012-2016 di Kabupaten Mandailing Natal. Universitas Sumatera Utara.

Naidoo, P., Theron, G., Rangaka, M. X., & et al. (2019). The South African Tuberculosis Care Cascade: Estimated Losses and Methodological Challenges. The Journal of Infectious Diseases, 220(Supplement 4), S274–S281. https://doi.org/10.1093/infdis/jiz542

Rahmatillah, D. K. (2018). Analisis Time Series Model Fungsi Transfer untuk Meramal Kasus Tuberkulosis di Kota Surabaya. Universitas Airlangga.

Sahu, S., Ditiu, L., Zignol, M., Bloom, A., & et al. (2017). Improving tuberculosis case notification in low- and middle-income countries: The WHO ENGAGE-TB operational research roster. Public Health Action, 7(3), 165–170.

Sembiring, E. S., & Syahputra, Z. (2022). Prediksi Aktivitas Tanpa Masker Dengan Kombinasi Metode Single Exponential Smoothing dan Fuzzy Time Series. J-Com (Journal of Computer), 2(1), 57–62.

Silva, H. A. da, & Moure, A. S. (2020). Teaching Introductory Statistical Classes in Medical Schools Using RStudio and R Statistical Language: Evaluating Technology Acceptance and Change in Attitude Toward Statistics. Journal of Statistics Education, 28(2), 212–219. https://doi.org/10.1080/10691898.2020.1773354

Subbaraman, R., Nathavitharana, R. R., Satyanarayana, S., Pai, M., & et al. (2016). The Tuberculosis Cascade of Care in India’s Public Sector: A Systematic Review and Meta-analysis. PLoS Medicine, 13(10).

Wardhani, A. R., & Pereira, S. M. (2010). Studi Analisis Peramalan dengan Metode Deret Berkala. Widya Teknika, 18(2), 1–6.

WHO. (2018). Global Report Tuberculosis. World Health Organization.

WHO. (2022). Global Tuberculosis Report. World Health Organization.

WHO. (2023). Global Tuberculosis Report. World Health Organization.

Wingfield, T., Boccia, D., Tovar, M., Gavino, A., & et al. (2014). Defining catastrophic costs and comparing their importance for adverse tuberculosis outcome with multi-drug resistance: A prospective cohort study, Peru. PLoS Medicine, 11(7).

Zhang, Y.-Q., Li, X.-X., Li, W.-B., Jiang, J.-G., Zhang, G.-L., Zhuang, Y., Xu, J.-Y., Shi, J., & Sun, D.-Y. (2020). Analysis and predication of tuberculosis registration rates in Henan Province, China: an exponential smoothing model study. Infectious Diseases of Poverty, 9(123), 1–12. https://doi.org/10.1186/s40249-020-00742-y

Zheng, Y., Zhang, L., Wang, L., & Rifhat, R. (2020). Statistical methods for predicting tuberculosis incidence based on data from Guangxi, China. BMC Infec Dis, 20(300). https://doi.org/10.1186/s12879-020-05033-3

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Difa Nur Sya'balinda

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.